Strongly regular graphs
The strongly_regular_graph
module defines the
StronglyRegularGraph
class, which represents
a strongly regular graph, with some of its properties,
such as its stronly regular parameters.
AUTHORS:
Paul Leopardi (2016-10-19): initial version
- class boolean_cayley_graphs.strongly_regular_graph.StronglyRegularGraph(graph=None, **kwargs)[source]
Bases:
boolean_cayley_graphs.graph_improved.GraphImproved
A strongly regular graph, with lazy attributes for some computed properties.
The class inherits from
GraphImproved
, and is initialized either from a graph or from keyword arguments.EXAMPLES:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: g = royle_x_graph() sage: g.is_strongly_regular() True sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: srg = StronglyRegularGraph(g) sage: srg.is_strongly_regular() True
TESTS:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: g = royle_x_graph() sage: srg = StronglyRegularGraph(g) sage: print(srg) Graph on 64 vertices sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: g = royle_x_graph() sage: srg = StronglyRegularGraph(g) sage: latex(srg) \begin{tikzpicture} \definecolor{cv0}{rgb}{0.0,0.0,0.0} ... \Edge[lw=0.1cm,style={color=cv0v1,},](v0)(v1) ... \end{tikzpicture}
- automorphism_group[source]
The automorphism group of the graph.
EXAMPLES:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: g = royle_x_graph() sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: srg = StronglyRegularGraph(g) sage: srg.automorphism_group.structure_description() '(C2 x C2 x C2 x C2 x C2 x C2) : S8'
- group_order[source]
The order of the automorphism group of the graph.
EXAMPLES:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: g = royle_x_graph() sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: srg = StronglyRegularGraph(g) sage: srg.group_order 2580480
- matrix_GF2[source]
The adjacency matrix of the graph, over \(\mathbb{F}_2\).
EXAMPLES:
sage: from boolean_cayley_graphs.bent_function import BentFunction sage: bentf = BentFunction([0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0]) sage: g = bentf.cayley_graph() sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: sg = StronglyRegularGraph(g) sage: sg.matrix_GF2 [0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0] [0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1] [0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1] [1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1] [0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1] [0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0] [0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0] [1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0] [0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1] [0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0] [0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0] [1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0] [1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1] [1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0] [1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0] [0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0]
- rank[source]
The 2-rank of the graph.
EXAMPLES:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: g = royle_x_graph() sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: srg = StronglyRegularGraph(g) sage: srg.rank 64
- strongly_regular_parameters[source]
The strongly regular parameters of the graph.
EXAMPLES:
sage: from boolean_cayley_graphs.royle_x_graph import royle_x_graph sage: g = royle_x_graph() sage: g.is_strongly_regular(parameters=True) (64, 35, 18, 20) sage: from boolean_cayley_graphs.strongly_regular_graph import StronglyRegularGraph sage: srg = StronglyRegularGraph(g) sage: srg.is_strongly_regular() True sage: srg.strongly_regular_parameters (64, 35, 18, 20)